# Hepatocellular Carcinoma Case Report from the Phase 3 HOPE-B Gene Therapy Trial in Adults with Hemophilia B

Manfred Schmidt<sup>1</sup>, Graham R. Foster<sup>2</sup>, Michiel Coppens<sup>3</sup>, Hauke Thomsen<sup>1</sup>, David Cooper<sup>4</sup>, Ricardo Dolmetsch<sup>4</sup>, Eileen K. Sawyer<sup>4</sup>, Liesbeth Heijink<sup>5</sup>, <u>Steven W. Pipe<sup>6</sup></u>

<sup>1</sup>GeneWerk GmbH, Heidelberg, Germany; <sup>2</sup>Barts Liver Centre, Queen Mary University of London, London, UK; <sup>3</sup>Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; <sup>4</sup>uniQure Inc. Lexington, MA, USA; <sup>5</sup>uniQure BV, Amsterdam, the Netherlands; <sup>6</sup>University of Michigan, Ann Arbor, MI, USA

## **Disclosures for Steven W. Pipe**

In compliance with COI policy, ISTH requires the following disclosures to the session audience:

| Research Support/P.I.     | No relevant conflicts of interest to declare |
|---------------------------|----------------------------------------------|
| Employee                  | No relevant conflicts of interest to declare |
| Consultant                | No relevant conflicts of interest to declare |
| Major Stockholder         | No relevant conflicts of interest to declare |
| Speakers Bureau           | No relevant conflicts of interest to declare |
| Honoraria                 | No relevant conflicts of interest to declare |
| Scientific Advisory Board | No relevant conflicts of interest to declare |

- Open label phase 3 study with follow-up of 54 subjects with hemophilia B receiving a single dose of 2×10<sup>13</sup> gc/kg of etranacogene dezaparvovec
  - The largest AAV gene therapy trial cohort in hemophilia B reported to date
  - Mean FIX activity significantly increased to near-normal levels at 6 months post-etranacogene dezaparvovec<sup>1</sup>
  - Most common safety findings at 6 months were transaminase elevations requiring steroid treatment (9 subjects) and infusionrelated reactions (7 subjects), supporting a safety profile consistent with early phase studies<sup>1,2,3</sup>
- Here we present an SAE of hepatocellular carcinoma (HCC) in a trial subject with multiple pre-existing risk factors for HCC, including the findings of an independent, expert molecular evaluation that determined this case was unlikely to be related to treatment with etranacogene dezaparvovec
- Details about the study and interim safety and efficacy data at 52weeks after dosing are reported in PB0653<sup>4</sup>



1. Pipe et al; ASH 2020 <u>https://ashpublications.org/blood/article/136/Supplement\_2/LBA-6/474189/First-Data-from-the-Phase-3-HOPE-B-Gene-Therapy</u>

3. Von Drygalski A, et al, ASH 2020; Oral presentation #672.

<sup>2.</sup> Leebeek FWG, et al, ASH 2020; Poster #33724

<sup>4.</sup> Pipe et al ISTH 2021; 52 Week Efficacy and Safety of Etranacogene Dezaparvovec in Adults with Severe or Moderate-Severe Hemophilia B: Data from the Phase 3 HOPE-B Gene Therapy Trial AAV, adeno-associated virus; HCC, hepatocellular carcinoma, FIX; factor IX.

# **HCC epidemiology and risk factors**

- Primary liver cancer is the sixth most common cancer worldwide.<sup>1</sup>
- Risk factors for development of HCC includes, but not limited to, Hepatitis C Virus (HCV) and/or Hepatitis B Virus (HBV), advanced age, gender and cirrhosis.<sup>2</sup>
- HCC development has been strongly linked to HBV and HCV infections and is associated with approximately 80% of HCC cases.<sup>3</sup>
- Most cases of HCV-related and HBV-related HCC occur among patients with advanced fibrosis or cirrhosis. However, up to 20% of patients that develop HCC have a non-cirrhotic liver.<sup>2</sup>
- Other risk factors include high alcohol consumption, obesity, exposure to environmental toxins, and metabolic disorders such as NAFLD/NASH.<sup>2,4</sup>
- Although the incidence of HCC is higher in the hemophilic population, it has been correlated with higher incidence of HCV infection and is not due to the hemophilia phenotype.<sup>5</sup>
- Despite clearance of HCV, HCC risk is not eliminated but has been estimated to be reduced by 71%.<sup>6</sup>

<sup>1.</sup> Sung H et al., CA Cancer J Clin 2021;71:209–249. 2. Desai A, et al. World J Hepatol. 2019;11(1):1-18. 3. El-Serag HB. Gastroenterology. 2012;142(6):1264-1273. 4. Marrero JA, et al. Hepatology. 2018 Aug;68(2):723-750. doi: 10.1002/hep.29913. 5. Shetty S, et al. Critical Reviews in Oncology/Hematology. 2016;99:129-133. 6. Ioannou GN, et al. J Hepatol, 5 Sep 2017; doi:10.1016/j.jhep.2017.08.030

- 69-year-old, white, non-Hispanic male with moderately severe Hemophilia B
  - 1980 Diagnosed with **HBV** (+ve for anti-HBs, anti-HBc and anti-HBe antibodies)
  - 1983 Diagnosed with non-A/non-B hepatitis
  - 2003 Confirmed positive for **HCV** when testing available
  - 2015 Evaluated for HCV eradication therapy, genotype 1a, no significant fibrosis (Fibroscan 5.7 kPa)
  - 2015 Treated with paritaprevir/ombitasvir/ritonavir, dasabuvir, and ribavirin; achieving a sustained virologic response
- Social history notable for prior smoking, alcohol consumption of 0-2 units/week
- Familial history notable for cancer

## **Timeline of adverse event evaluation/management**



|                               | Expected findings if<br>AAV integration drove HCC                                       | Expected findings if<br>HCC independent of AAV treatment                                                              |
|-------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Integration<br>Site Analysis  | <ul> <li>Frequent integrations in HCC</li> <li>Dominant AAV integration site</li> </ul> | <ul><li>Very infrequent integrations</li><li>No dominant integration site</li></ul>                                   |
| Whole<br>Genome<br>Sequencing | <ul> <li>Integration in/near known oncogenes (eg. TP53, NFE2L2)</li> </ul>              | <ul> <li>Common HCC oncogene mutations (eg. TP53, NFE2L2)</li> <li>No AAV integration sites near oncogenes</li> </ul> |

### **Molecular Analysis: Vector Copy Number and Integration Rate**

- Molecular analysis for copy number quantification was conducted via qPCR
  - Vector copy number (VCN) was calculated by normalizing vector copies to the number of housekeeping-gene copies (diploid genomes)

| Tissue       | VCN<br>(copies/diploid genome) |
|--------------|--------------------------------|
| HCC          | 3.21                           |
| HCC-adjacent | 4.11                           |

- S-EPTS/LM-PCR\*, was used to determine the number of integration sites per cell
  - Etranacogene dezaparvovec integration rate into hepatocytes is very low as previously reported for AAV
  - Less than 60 cells out of 250,000 (0.027%) had an integration event in the HCC tumor sample

| Tissue       | Integration rate |
|--------------|------------------|
| HCC          | 0.027%           |
| HCC-adjacent | 0.018%           |

#### **Molecular Analysis II: Site of Vector Integration**

- Integration site (IS) analysis was conducted via whole genome sequencing (WGS)
- No integration event was observed in more than 1 sequence read out of 150 reads
  - The low number of sequence reads for each IS indicate that IS are rare in both the HCC and HCC-adjacent samples.
  - There is no dominant IS in the HCC sample.

| HCC-adjacent | Chromosome | Integration site | Total sequence count | Gene Name |
|--------------|------------|------------------|----------------------|-----------|
|              | Chr19      | 44924479         | 1                    | APOC1P1   |
|              | Chr5       | 126472870        | 1                    | GRAMD3    |

|     | Chromosome | Integration site | Total sequence count | Gene Name |
|-----|------------|------------------|----------------------|-----------|
|     | Chr19      | 44924545         | 1                    | APOC1P1   |
| нсс | Chr5       | 54714322         | 1                    | EML6      |
|     | Chr4       | 91418750         | 1                    | CCSER1    |

#### **Molecular Analysis III: genome-wide chromosomal rearrangements**



#### Whole Genome Sequence analysis

- Multiple structural variants were observed in HCC sample, including mutations in TP53 and NFE2L2 - known to be common drivers of HCC - independent of etranacogene dezaparvovec
- Large chromosomal rearrangements in Chr 1,8 and X characteristic of HCC independent of etranacogene dezaparvovec

## **HCC Analysis: Summary of Results**

|                                 | Expected findings if<br>AAV integration drove<br>HCC                                    | Expected findings if<br>HCC independent of AAV<br>treatment                                                | Actual findings of GeneWerk analysis                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Integration<br>Site<br>Analysis | <ul> <li>Frequent integrations in HCC</li> <li>Dominant AAV integration site</li> </ul> | <ul><li>Very infrequent integrations</li><li>No dominant integration site</li></ul>                        | <ul> <li>Etranacogene dezaparvovec integration rate into<br/>hepatocytes is very low as previously reported for AAV</li> <li>No dominant integration event or integration site in the<br/>HCC sample</li> <li>Less than 60 cells out of 250K (0.027%) had an<br/>integration event in the tumor sample</li> </ul>                                                         |
| Whole<br>Genome<br>Sequencing   | <ul> <li>Integration in/near known oncogenes (eg. TP53, NFE2L2)</li> </ul>              | <ul> <li>Common HCC oncogene<br/>mutations</li> <li>No AAV integration sites near<br/>oncogenes</li> </ul> | <ul> <li>Very low rate of vector integration in genes not known to<br/>be associated with HCC</li> <li>Large chromosomal rearrangements in Chr 1,8 and X<br/>characteristic of HCC - independent of etranacogene<br/>dezaparvovec</li> <li>Mutations in TP53 and NFE2L2 - known to be common<br/>drivers of HCC - independent of etranacogene<br/>dezaparvovec</li> </ul> |

## **Conclusions and Future Recommendations**

- Asymptomatic HCC was identified in an older subject with HBV, prior HCV post SVR on a routine safety ultrasound 1 year after dosing; the subject has been treated with TACE and is under evaluation for liver transplant
- HCC development in this case is now considered unlikely related to treatment with etranacogene dezaparvovec based upon the results of genetic analysis and pre-existing risk factors
- Short-term and long-term follow-up is important after gene therapy
  - Many patients with hemophilia have pre-existing risk factors for HCC
  - The risk of HCC after HCV-SVR is still being investigated
  - Aging patients may develop risk factors over time unrelated to treatment (age >50, NAFLD/NASH, obesity, alcohol use)
- Ultrasound monitoring of all participants enrolled in etranacogene dezaparvovec clinical trials was increased to twice yearly regardless of pre-existing risk factors for HCC as a conservative approach.