Lowering the pathogenic exon 1 HTT fragment by AAV5-miHTT gene therapy
Marina Sogorb-González1,2, Fanny Mariet1, Anouk Stam1, Blair Leavitt3, Pavlina Konstantinova1, Sander J. van Deventer1,2, Astrid Vallès1, Melvin M. Evers1
1Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands, 2Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands, 3Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.

BACKGROUND
Huntington disease (HD) is a fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. This mutation is translated into a polyQ tract in the HTT protein which confers toxicity. Recently, it has been demonstrated that, apart from the full-length mutant HTT (mHTT) protein, exon 1 HTT fragments generated by aberrant splicing of intron 1 are prone to aggregate and contribute to HD pathology.1,2 These findings suggest that approaches capable of reducing the expression of the highly pathogenic exon 1 HTT protein might achieve a greater therapeutic benefit than only targeting the full-length mHTT protein.

We have developed an engineered microRNA targeting exon 1 HTT (mHTT), delivered via adeno-associated serotype 5 virus (AAV5).3 AAV5-miHTT treatment has been demonstrated to lower mHTT in several rodent models (including the exon 1 R6/2 mouse model) and large animal models.4-6

OBJECTIVES
Here, we investigated the efficacy of AAV5-miHTT to reduce the aberrantly spliced exon 1 HTT mRNA fragment in knock-in HD mice.

- To confirm the presence of aberrantly spliced exon 1 HTT mRNA transcripts in Q175 KI mice.
- To investigate the lowering of exon 1 HTT mRNA by AAV5-miHTT treatment in Q175 KI mice.

METHODS
Q175FDN mice
The Q175FDN mouse model is an enhanced HD knock-in model containing human exon 1 HTT sequence (175 CAG repeats) in the HTT mouse homolog. Removal of the neomycin cassette results in increased mHTT expression, earlier symptom onset and a severe HD-like phenotype.7 Homozygous Q175FDN mice at three months of age were treated by bilateral intrastriatal injection with two doses of AAV5-miHTT or formulation buffer.

RESULTS
Successful detection of aberrantly spliced exon 1 mRNA transcript in Q175FDN mice
- Short exon 1 HTT mRNA transcripts were detected in striatum and cortex of Q175FDN mice, but not in WT mice by 3’RACE-PCR (Fig. 3A) and RT-PCR (Fig. 3B).

One-time intrastratal injection results in brain distribution and expression of mHTT
- Three months after AAV5-miHTT treatment, AAV5 dose-dependent levels of vector DNA and mature mHTT molecules were detected in the striatum (injection site) and cortex of Q175FDN mice (Fig. 4A and B).

CONCLUSIONS
- Successful detection of aberrantly spliced exon 1 mRNA in striatum and cortex of HD Q175FDN mice.
- Widespread distribution of therapeutic miHTT in striatum and cortex in Q175FDN mice.
- AAV5-miHTT treatment demonstrated lowering of full-length HTT mRNA in striatum and cortex.
- Significant lowering of exon 1 mRNA transcript after AAV5-miHTT treatment.

The successful lowering of pathogenic exon 1 HTT fragment adds therapeutic value to AAV5-miHTT gene therapy for HD.

REFERENCES

ACKNOWLEDGMENTS
Authors are grateful to Andrew Hill from University of British Columbia for his technical assistance.

Presented at CHDI 2020 the 15th Annual Huntington’s Disease Therapeutics Conference: A Forum for Drug Discovery & Development, February 24-27, Palm Springs